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Abstract: We present a general theory of three-dimensional non-
paraxial spatially-accelerating waves of the Maxwell equations. These
waves constitute a two-dimensional structure exhibiting shape-invariant
propagation along semicircular trajectories. We provide classification and
characterization of possible shapes of such beams, expressed through the
angular spectra of parabolic, oblate and prolate spheroidal fields. Our results
facilitate the design of accelerating beams with novel structures, broadening
scope and potential applications of accelerating beams.
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1. Introduction

The concept of self-accelerating beam, which was introduced into the domain of optics in
2007 [1,2], has generated much follow-up and many new discoveries and applications. Gener-
ally, the term “accelerating beams” is now used in conjunction with wave packets that preserve
their shape while propagating along curved trajectories. The phenomenon arises from interfer-
ence: the waves emitted from all points on the accelerating beam interfere in the exact manner
that maintains a propagation-invariant structure, bending along a curved trajectory. This beau-
tiful phenomenon requires no waveguiding structure or external potential, appearing even in
free-space as a result of pure interference. The first optical accelerating beam, the paraxial Airy
beam, was proposed and observed in 2007 [1, 2]. Since then, research on accelerating beams
has been growing rapidly, leading to many intriguing ideas and applications ranging from parti-
cle and cell micromanipulation [3], light-induced curved plasma channels [4], self-accelerating
nonlinear beams [5], self-bending electron beams [6] to accelerating plasmons [7] and applica-
tions in laser micromachining [8]. Following the research on spatially-accelerating beams, sim-
ilar concepts have been studied also in the temporal domain, where the main intensity features
of a pulse self-accelerate in a dispersive medium [1,9–11] up to some critical point determined
by causality [11]. Interestingly, shape-preserving accelerating beams were also found in the
nonlinear domain [12] in a variety of nonlinearities ranging from Kerr, saturable and quadratic
media [12–15] to nonlocal nonlinear media [14].

In two-dimensional (2D) paraxial systems (including the propagation direction and one di-
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rection transverse to it), the one-dimensional Airy beams are the only exactly shape-preserving
solutions to the paraxial wave equation with accelerating properties. However, in three-
dimensional (3D) paraxial systems, two separable solutions are possible: two-dimensional Airy
beams [2] and accelerating parabolic beams [16, 17]. Furthermore, it has been shown [18] that
any function on the real line can be mapped to an accelerating beam with a different transverse
shape. This allows the creation of paraxial accelerating beams with special properties such as
reduced transverse width and beams with a transverse arc-shape profile having a finite width,
instead of a long tail, in the accelerating direction.

However, until 2012, the concept of accelerating beams was restricted to the paraxial
regime, and the general mindset was that accelerating wave packets are special solutions for
Schrödinger-type equations, as they were originally conceived in 1979 [19]. This means that
the curved beam trajectory was believed to be restricted to small (paraxial) angles. In a simi-
lar vein, paraxiality implies that the transverse structure of paraxial accelerating beams cannot
have small features, on the order of a few wavelengths or less. At the same time, reaching steep
bending angles and having small scale features is fundamental in areas like nanophotonics
and plasmonics, hence searching for shape-preserving accelerating nonparaxial wave packets
was naturally expected. Indeed, recent work [20] has overcome the paraxial limit finding shape-
preserving accelerating solutions of the Maxwell equations. These beams propagate along semi-
circular trajectories [20,21] that can reach, with an initial “tilt”, almost 180◦ turns [22]. Subse-
quently, 2D nonparaxial accelerating wave packets with parabolic [23,24] and elliptical [24,25]
trajectories were found. Also, 3D nonparaxial accelerating beams were proposed, based on
truncations or complex apodization of spherical, oblate and prolate spheroidal fields [25, 26].
Finally, nonparaxial accelerating beams were suggested in nonlinear media [27,28].

All of this recently found plethora of nonparaxial accelerating beams suggest there might
be a broader theory of self-accelerating beams of the three-dimensional Maxwell equations:
a general formulation encompassing all the particular examples of [18, 25], and generalizing
them to a unified representation. Such a theory could once and for all answer several questions
about the phenomenon of self-accelerating beams. For example, what kind of beam structures
can display shape-preserving bending? What are the fundamental limits on their feature size
and acceleration trajectories? What trajectories would such beams follow?

Here, we present a theory describing the entire domain of 3D nonparaxial accelerating waves
that propagate in a semicircle. These electromagnetic wave packets are monochromatic solu-
tions to the Maxwell equations and they propagate in semicircular trajectories reaching asymp-
totically a 90◦ bending in a quarter of a circle. We show that there are two orthogonal polariza-
tions that are essentially perpendicular to the energy flux. In their scalar form, these waves are
exact time-harmonic solutions of the wave equation. As such, they have implications to many
linear wave systems in nature. We propose a classification and characterization of possible
shapes of these accelerating waves, expressed through the angular spectra of parabolic, oblate
and prolate spheroidal fields. We find novel transverse distributions, such as the nonparaxial
counterpart of a 2D paraxial Airy beam, and accelerating beams that instead of a slowly decay-
ing long tail, have a highly localized width (of a few wavelengths) in the transverse direction to
the propagation direction that bends in a circle, among others.

2. Three-dimensional nonparaxial accelerating waves

We begin our analysis by considering the 3D Helmholtz equation
(
∂xx+ ∂yy+ ∂zz+ k2

)
ψ =

0 wherek is the wavenumber. In free space, the solution of the Helmholtz equation can be
described in terms of plane waves through its angular spectral functionA(θ ,φ) as

ψ (rrr) =
∫

A(θ ,φ)exp(ikrrr ·uuu)dΩ, (1)
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Fig. 1. Intensity cross-sections of three-dimensional nonparaxial accelerating beams and
their corresponding generating functionsg(θ ). Top row: Amplitudes of the generating
functions as a function of thek-space angleθ . Middle row: Intensity cross-section atz= 0
presenting the shape-invariant profile of each beam. Bottom row: Top-view plot showing
the intensity cross-section at planey= 0 highlighting the circular trajectory. All lengths are
in units ofk−1.

whereuuu = (sinθ sinφ ,cosθ ,sinθ cosφ) is a unit vector that runs over the unit sphere, and
dΩ = sinθdθdφ is the solid angle measure on the sphere.

To search for wavepackets that are shape-preserving and whose trajectory resides on a
semicircle, it is convenient to start with solutions whose trajectory resides on a full circle,
i.e., solution with rotational symmetry. These solutions have an intensity profile that is ex-
actly preserved over planes containing they-axis and therefore they will have defined angu-
lar momentumJy = −i (z∂x− x∂z) along this axis. This operator acts on the spectral function
asJy = −i∂φ ; hence, the spectral function of a rotationally symmetric solution must satisfy
−i∂φ A= mA. In this way, any rotationally symmetric wave must have a spectral function of the
form A(θ ,φ) = g(θ )exp(imφ) , wherem is a positive integer andg(θ ) is any complex function
in the interval[0,π ].

Although these rotationally symmetric fields are shape-invariant and travel in a closed circle,
they are composed of forward- (positivekz, i.e.,φ ∈ [−π/2,π/2]) and backward- (negativekz,
i.e., φ ∈ [π/2,3π/2]) propagating waves. Creating such rotationally-symmetric beams would
require launching two pairs of counter-propagating beams (or two counter-propagating beams
each with an initial tilt of virtually 90◦ angle). Here, we are interested in beams that can be
launched from a single plane. We therefore limit the integration in Eq. (1) to the forward semi-
circle φ ∈ [−π/2,π/2] resulting in a forward-propagating wave with accelerating characteris-
tics that can be created by a standard optical system, i.e.,

ψ (rrr) =
∫ π

0

∫ π/2

−π/2
g(θ )exp(imφ)exp(ikrrr ·uuu)sinθdθdφ , (2)

where nowm can be any positive real number (not necessarily an integer), because we are no
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longer restricted by periodic boundary conditions. In this way, any functiong(θ ) generates a
nonparaxial accelerating wave with a different transverse distribution. Furthermore, by con-
struction, all these waves share the same accelerating characteristics: their maxima propagate
along a semicircular path of radius slightly larger thanm/k, while approximately preserving
their 2D transverse shape up to almost 90◦ bending angles. These characteristics are reminis-
cent of broken rotational symmetry. Although the bending effect can be appreciated for any
m> 0, due to the size of the features of the beam, the bending becomes relevant form& 20.
Also, because larger angular momentum gives better spatial separation of the counterpropa-
gating parts of a rotational field, our nonparaxial accelerating waves with largerm are shape-
invariant to larger propagation distances, but their rate of bending is slower, i.e., they follow a
larger circle.

Figure 1 shows several transverse-field distributions and propagation of nonparaxial acceler-
ating waves with their correspondingg(θ ). As we can see in Fig. 1 the semicircular propagation
path has a radiusm/k. It is possible to double the angle of bending (from 90◦ to 180◦) by prop-
agating these waves fromz< 0. In this case the waves have a bending angle opposite to the
direction of bending and depict full semicircles. Moreover, notice that the propagation charac-
teristics are independent ofg(θ ), and thatg(θ ) only controls the shape of the transverse pro-
file. As a consequence, on one hand, if we superpose accelerating waves with different values
of m, they will interfere during propagation, leading to families of periodic self-accelerating
waves [20,22]. On the other hand, waves with the samemwill propagate with the same propa-
gation constant, hence they will maintain their relative phase as in the initial plane, and preserve
their nondiffractive behavior.

Our construction of accelerating waves extends into the nonparaxial regime the construction
of paraxial accelerating beams in [18], where it is shown that any functionℓ(ky) on the real
line can be mapped to an accelerating beam. This is in direct analogy to our functiong(θ )
of the nonparaxial case. While in the paraxial case the bending (i.e., transverse acceleration)
is controlled by an overall scale parameter, in the nonparaxial case it is controlled bym as
described previously.

Although any functiong(θ ) can generate an accelerating wave, it is not straightforward to
visualize (ab initio) the features of the transverse profile that that function generates. For this
reason, we propose to use theg(θ ) functions associated with rotationally-symmetric separa-
ble solutions of the Helmholtz equation. As it is known [29], there are only four rotationally
symmetric separable solutions to this equation, corresponding to the spherical, parabolic, pro-
late spheroidal and oblate spheroidal coordinate systems, depicted in Fig. 2. The advantages of
borrowing the spectral function of these solutions is that we can create complete families of
nonparaxial accelerating waves and readily characterize their transverse structures.

The physical meaning of the separability of these solutions is that these waves have three
conserved physical constants. The first one is the conservation of energy given by the Helmholtz
equation, the second one is the conservation of azimuthal angular momentum, and the third
conserved quantity is specific to each case and corresponds to generalization of the total angular
momentum for each coordinate. This last symmetry characterizes the transverse profile of the
waves, i.e., their caustics. Interestingly, a family of rays sharing the same conserved constants
has equivalent caustics to our accelerating waves.

The spectral functions used here correspond to fields that are separable solutions of the wave
equation, expressible in terms of known special functions in the case when the plane wave
superposition involves components traveling in all possible directions. However, here we are
limiting the integration to forward propagating waves in order to describe fields that would
be easy to generate with standard optical setups. It must be noted that this truncation does
cause the resulting spatial fields not to be expressible in closed form, although the solutions are
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Fig. 2. Three-dimensional rotational coordinate systems for which the Helmholtz equation
is separable.

shown to essentially preserve the field profiles of the separable solutions over thex > 0 half
space. An alternative approach that would allow preserving the closed-form expressions while
suppressing backward propagating components is that of performing imaginary displacements
on the separable solutions, as discussed in [26].

In the next sections, we describe in detail the parabolic, prolate spheroidal and oblate
spheroidal nonparaxial accelerating waves. The spherical accelerating waves have been pre-
sented in [26] and nonparaxial accelerating waves based on spatial truncations of the full pro-
late and oblate spheroidal wave functions where presented in [25]. Although for large values of
mour waves can be approximated by those of [25], the Fourier space approach that we use here
allows us to generate the waves without the need of calculating neither the radial functions nor
the coordinate system.

3. Parabolic accelerating waves

We generate the parabolic accelerating waves by evaluating Eq. (2) with the following spectral
function

gβ (θ ) =
1

2π
[tan(θ/2)]iβ

sinθ
, −∞ < β < ∞, (3)

whereβ is a continuous “translation” parameter of the waves. In this case,mcan be any positive
real number sinceg(θ ) is independent ofm. The transverse field distributions atz= 0 of the
parabolic accelerating waves are shown in Fig. 3. As one can see, these profiles resemble the
ones of the 2D paraxial Airy beams [1, 2]; this is because the parabolic coordinate system
looks like a Cartesian coordinate system rotated 45◦ near a coordinate patch aty ≈ 0, |x| ≫
1, as shown in Fig. 2(a). The main lobe of the waves is located nearx = −m/k, y = β/k.
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Fig. 3. Parabolic accelerating waves with different “translation” values ofβ . (a,e) Intensity
cross-section at they= 0 plane, (b-d,f-h) intensity profiles atz= 0 planes. The white line
parabolas in (d,h) depict the caustic cross sections. All sections are of size 200×200 and
all lengths are in units ofk−1.

The fundamental mode isβ = 0 and asβ increases the waves “translate” in they-axis. This
is consistent with the result of [18] where it is shown that the paraxial 2D Airy beams are
orthogonal under translations perpendicular to the direction of acceleration. Notice that in the
nonparaxial case forβ 6= 0 there is also a “tilt” in the caustic accompanied by a change in
the spacing of the fringes along the caustic sheets. This “tilt” does not change the direction of
propagation, thus the acceleration is still horizontal in Fig. 3, and not in the direction to which
the intensity pattern points, as it might seem at first. This is analogous to the case of paraxial
2D Airy beams with different scale parameters for each of the constituent Airy functions. As
shown in Figs. 3(a) and 3(e), the parabolic accelerating waves present a single intensity main
lobe that follows a circular path of radius slightly larger thanm/k.

By separation of variables the Helmholtz equation can be broken into ordinary differential
equations [29] with an effective potential for each coordinate. The turning point of these effec-
tive potentials will give the caustics of the solutions. We find that our accelerating waves share
these caustics in a form reminiscent of the broken symmetries. In this way, we find that the
caustics of the parabolic accelerating waves are given by

u2
C =

(
β +

√
β 2+m2

)
/k, v2

C =
(
−β +

√
β 2+m2

)
/k, (4)

where the parabolic coordinates[u,v,φ ] , are defined as

x= uvsinφ , y=
1
2

(
u2− v2) , z= uvcosφ , (5)

whereu∈ [0,∞),v∈ [0,∞), φ ∈ [0,2π). The caustic cross sections are depicted in Figs. 3(d) and
3(h); by rotating these around they-axis one gets the caustic surfaces which are two paraboloids,
see Fig. 2(a).
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Fig. 4. Prolate spheroidal accelerating beams of different ordersn. (a,e) Intensity cross-
section at they= 0 plane. (b-d,f-h) Intensity profiles at thez= 0 plane. The beam of order
n has exactlyn+1 stripes. The white line hyperbolas and ellipses in (c,g) depict the caustic
cross sections. All subfigures are form= 120, of size 200×200, and all lengths are in units
of k−1.

4. Prolate spheroidal accelerating waves

We construct the prolate spheroidal accelerating waves by evaluating Eq. (2) with the following
spectral function

gm
n (θ ;γ) = Sm

m+n (cosθ ,γ) , γ ≡ k f, (6)

where the foci of the prolate spheroidal coordinate system are at(0,± f ,0), m= 0,1,2, . . . ,
n= 0,1,2, . . . , andSm

l (•) is the spheroidal wave function [30] that satisfies

d
dν

[(
1−ν2) d

dν
Sm

l (ν,γ)
]
+

(
Λm

l − γ2ν2− m2

1−ν2

)
Sm

l (ν,γ) = 0, (7)

whereΛm
l (γ) is the eigenvalue of the equation.

Several transverse intensity distributions aty= 0 andz= 0 of the prolate spheroidal accel-
erating waves are shown in Fig. 4. The waves have a definite parity with respect to they-axis,
which is given by the parity ofn. The ordern of the waves corresponds to the number of hy-
perbolic nodal lines at thez= 0 plane, and the width of the waves in they-axis increases asn
increases. As shown in Figs. 4(a) and 4(e), the prolate accelerating waves have two main lobes
(or a single lobe forn= 0) that follow parallel circular paths of radius slightly larger thanm/k,
i.e., the degreem of the waves controls their propagation characteristics.

To understand the behavior of the prolate waves for differentf , let us analyze how the prolate
spheroidal coordinate system behaves as a function off . As f → 0 the foci coalesce and the
prolate spheroidal coordinates tend to spherical ones, while in the other extreme, asf → ∞
the prolate spheroidal coordinates tend to circular cylindrical ones. Irrespective of the value of
f , the intensity of the beams is negligible for

√
x2+ z2 < m/k and x > 0. This limit can be

understood as a centrifugal force barrier.
We divide the prolate accelerating beams into three regimes:

• For m& k f, the prolate accelerating waves resemble the spherical accelerating waves
described in [25,26], cf. Figs. 4(f) and 4(h) with Figs. 2(j) and 2(l) of [26].

#187312 - $15.00 USD Received 18 Mar 2013; revised 15 May 2013; accepted 15 May 2013; published 3 Jun 2013
(C) 2013 OSA 17 June 2013 | Vol. 21,  No. 12 | DOI:10.1364/OE.21.013917 | OPTICS EXPRESS  13924



• For m< kf , the waves are located in a coordinate patch that approximates a Cartesian
system, hence the prolate accelerating waves take the formA(x)H(y), whereA(x) is an
accelerating function andH(y) is a function that retains its form upon propagation and
has finite extend.

• Form≪ k f , the prolate spheroidal coordinates tend to the circular cylindrical ones, and
the prolate accelerating waves tend to the product of a “half-Bessel” wave [20] in the
x-coordinate times a sine or cosine in they-coordinate.

To complete the characterization of the prolate accelerating beams, we find the caustic sur-
faces to be a prolate spheroid and two-sheet hyperboloids given by

sin2 η+
C =

−
(
Λ− γ2

)
+

√
(Λ− γ2)2+4γ2m2

2γ2 , sinh2 ξC =

(
Λ− γ2

)
+

√
(Λ− γ2)2+4γ2m2

2γ2 ,

(8)
andη−

C = π −η+
C , where the prolate spheroidal coordinates[ξ ,η ,φ ] , are defined as

x= f sinhξ sinη sinφ , y= f coshξ cosη , z= f sinhξ sinη cosφ , (9)

andξ ∈ [0,∞),η ∈ [0,π ], φ ∈ [0,2π). The caustic cross sections are depicted in Fig. 4(c) and
4(g); by rotating this around they-axis one gets the caustic surfaces, see Fig. 2(b).

5. Oblate spheroidal accelerating waves

The oblate spheroidal accelerating waves are given by evaluating Eq. (2) with the following
spectral function

gm
n (θ ; iγ) = Sm

m+n (cosθ , iγ) , γ ≡ k f, (10)

where f is the radius of the focal ring in they = 0 plane,m= 0,1,2, . . . , andn = 0,1,2, . . . .
Notice that the prolate and oblate spectral functions are related by the transformationγ2 →−γ2,
yet the two families exhibit different physical properties, that resemble each other only in the
spherical limit (m≫ k f).

By studying the caustics of the oblate accelerating waves we find that they have two types
of behavior according to the value of the eigenvalue ofSm

m+n(cosθ , iγ), Λm
m+n (iγ). On the one

hand, ifΛm
m+n (iγ)>m2, the caustic is composed of an oblate spheroid and a hyperboloid of rev-

olution; we call these waves of outer-type. On the other hand, ifΛm
m+n (iγ)< m2, the caustic is

composed of two hyperboloids of revolution; we call these waves of inner-type [see Figs. 5(f)-
5(g) and 5(j)-5(k)]. Interestingly, in general this last condition is only fulfilled ifk f > m. Be-
causeΛm

m+n (iγ) increases asn increases, for anyk f > m there is a maximum value ofn for
inner-type waves and for highern values the waves become outer-type. This transition from
inner-type to outer-type asn increases is depicted in middle and bottom rows of Fig. 5.

5.1. Outer-type

Outer-type oblate accelerating waves are depicted in Fig. 5. The degreemof the waves controls
their propagation characteristics because their two main lobes (or single lobe forn= 0) follows
a circular path of radius slightly larger thanm/k [see Fig. 5(a)]. The ordern gives its parity
with respect to they-axis and corresponds to the number of hyperbolic nodal lines at thez= 0
plane. One of the two cusps thatn > 0 oblate waves have, can be suppressed by combining
three of these field as in [26], i.e.,Ψm

n − i/2
(
Ψm

n+1−Ψm
n−1

)
. Notice thatn= 0 outer-type waves

are very thin (several wavelenghts), even more confined in they-axis than the parabolic and
prolate accelerating waves, cf. Fig. 5(b) and Fig. 3(b), Fig. 4(b); this gives these type of waves
a potential advantage in applications.
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Fig. 5. Oblate spheroidal accelerating beams of outer-type and inner-type. (a,e,i) Intensity
cross-section at they= 0 plane. (b-d,f-h,j-l) Intensity profiles at thez= 0 plane. The white
line hyperbolas and ellipses in (d,g,h,k,l) depict the caustic cross sections. The white dots
correspond to the foci. All subfigures are form= 100, of size 200×200, and all lengths
are in units ofk−1.

Near a coordinate patch at| x |≈ f andy≈ 0 the transverse coordinates look like a parabolic
system, see Fig. 2(c). Then form= k f the oblate accelerating waves become the nonparaxial
version of the paraxial accelerating parabolic beams in [16, 17], cf. Figs. 5(b), 5(c), 5(d) and
Figs. 1(a), 1(c), 1(e) of [16].

The caustics of the outer-type oblate accelerating waves are given by

sin2 ηO
C =

(
Λ+ γ2

)
−
√
(Λ+ γ2)2−4γ2m2

2γ2 , cosh2 ξ O
C =

(
Λ+ γ2

)
+

√
(Λ+ γ2)2−4γ2m2

2γ2 ,

(11)
where the oblate spheroidal coordinates[ξ ,η ,φ ] , are defined as

x= f coshξ sinη sinφ , y= f sinhξ cosη , z= f coshξ sinη cosφ , (12)

andξ ∈ [0,∞),η ∈ [0,π ], φ ∈ [0,2π). The caustic cross sections are depicted in Fig. 5(d), 5(h),
and 5(l); by rotating this around they-axis one gets the caustic surfaces, which are an oblate
spheroid and a hyperboloid of revolution, see Fig. 2(c).

5.2. Inner-type

Inner-type oblate accelerating waves form⌈(n+1)/2⌉ hyperpolic stripes that separate two re-
gions of darkness [see Fig. 5(f), 5(g), 5(j) and 5(k)] and therefore their topological structure is
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different than all the other waves presented in this work. First, the caustic of these waves does
not present a cusp. Also, the intensity cross section at they= 0 plane of then= 0 inner-type
wave only presents a single lobe of several wavelengths width, instead of a long tail of lobes
present in all the other accelerating beams, cf. Figs. 5(e), 5(i) and Fig. 5(a). Moreover, the
position of the maximum is no longer nearx = −m/k but at somex < −m/k. The maximum
amplitude remains constant during propagation until it decays very close to 90◦ of bending; this
behavior is completely different than that of other accelerating waves that present a small os-
cillation of their maximum during propagation - compare Figs. 5(e), 5(i) and Fig. 5(a). Finally,
these waves have definite parity with respect to they-axis, which is given by the parity ofn. For
example, the waves withn= 2 [see Fig. 5(g)] andn= 3 both form two parabolic stripes, but
have opposite parity. If we combine these waves of opposite parity, i.e.,ψn± iψn+1, wheren
is even, we can create continuous stripes of light that will also carry momentum along the hy-
perbolic stripes at a given plane containing they-axis. The magnitude of this local momentum
density is proportional to the intensity of the beam and to the spatial frequency of the stripe pat-
tern of the even and odd constituent waves. Asymptotically, on the field’s tails the momentum
is proportional to the wavenumber.

The caustics of inner-type oblate accelerating waves are given by

sin2 η I+
C =

(
Λ+ γ2

)
−
√
(Λ+ γ2)2−4γ2m2

2γ2 , sin2 η I−
C =

(
Λ+ γ2

)
+

√
(Λ+ γ2)2−4γ2m2

2γ2 .

(13)
The caustics cross sections are depicted in Fig. 5(g) and 5(k); by rotating this around they-axis
one gets the caustic surfaces which are two hyperboloids of revolution.

6. Vector solutions

While up to this point our work has dealt with scalar waves, full vector accelerating waves can
be readily constructed from these results by using the Hertz vector potential formalism. This
formalism shows that an electromagnetic field in free-space can be defined in terms of a single
auxiliary vector potential [31]. In this way, if the auxiliary Hertz vector potentialsΠΠΠe,m satisfy
the vector Helmholtz equations, i.e.,∇2ΠΠΠe,m+k2ΠΠΠe,m= 0, one can recover the electromagnetic
field components by

H = iωε∇×ΠΠΠe, E = k2ΠΠΠe+∇(∇ ·ΠΠΠe) , (14)

which are called electric type waves or

E =−iωµ∇×ΠΠΠm, H = k2ΠΠΠm+∇(∇ ·ΠΠΠm) , (15)

which are called magnetic type waves. Therefore, we can find electromagnetic accelerating
waves with different vector polarizations by settingΠΠΠe,m = ψ v̂, whereψ is any of the scalar
accelerating waves presented earlier andv̂ is any unit vector of a Cartesian coordinate system.

The Hertz vector potentialsΠΠΠe,m = ψ ŷ are of special interest because they give electromag-
netic accelerating waves with orthogonal polarizations that share the same characteristics as the
scalar ones. In case ofΠΠΠe = ψ ŷ, the electric field is basically given byE ≈ ψ ŷ. In the case of
ΠΠΠm = ψ ŷ the electric field given by is

E =iωµ
(
−ρ̂

∂φ

ρ
+ φ̂∂ρ

)
ψ ,

where (ρ ,φ ,y) are circular cylindrical coordinates related to the Cartesian coordinates by
(x,y,z) = (ρ sinφ ,y,ρ cosφ). This cylindrical coordinate system is useful because it shows that
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Fig. 6. Comparison between vector parabolic, prolate, and oblate accelerating beams. Each
row shows the electric field intensity of the radialρ̂ and angular̂φ components of a single
electromagnetic accelerating wave at thez= 0 andy = 0 planes, over sections of size
200×200. The white arrows in the first row depict the vector component. All lengths are
in units ofk−1.

theρ̂ component is dominant: As we already showed, in the region of interest the scalar waves
behave approximately asψ ∼ F (ρ/k,y/k)eimφ . Thenρ−1∂φ ψ ∼ imρ−1ψ , and because the
maximum ofψ is aroundρ ∼ m/k the amplitude of the maximum of the radial component is
approximatelykψ . Now, ∂ρ ψ ∼ (F ′/F)kψ andF ′/F ≪ 1 around the main lobes ofψ . This
allows us to show that the radial componentρ̂ is dominant. This behavior was confirmed by
comparing both components numerically. Hence, the polarization of these accelerating beams
is perpendicular to the direction of propagation that bends in a circle. Physically, this makes
sense, since the polarization must be perpendicular to the propagation direction of each plane-
wave constituent of the beam, and in the case of our accelerating electromagnetic waves the
radial component̂ρ is always perpendicular to the direction of propagation of the whole wave
packet that bends in a circle. Figure 6 shows the radial and angular components of the electric
field of several accelerating electromagnetic waves at thex= 0 andz= 0 planes; notice that the
radial component preserves the shape and propagation characteristics of the scalar accelerating
waves.

7. Conclusion

To summarize, we presented a general theory of three-dimensional nonparaxial accelerating
electromagnetic waves, displaying a large variety of transverse distributions. These waves prop-
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agate along a semicircular trajectory while essentially maintaining an invariant shape. In their
scalar form, these waves are exact time-harmonic solutions of the wave equation; therefore they
have implications to many linear wave systems in nature such as sound, elastic and electron
waves. Moreover, in their electromagnetic form, these families of waves span the full vector
solutions of the Maxwell equations, in several different representations, each family presenting
a different basis for this span. By using the angular spectrum of parabolic, oblate and prolate
spheroidal fields, we gave a classification and characterization of the possible transverse shape
distributions of these waves. As a final point, because our accelerating waves are nonparaxial,
they can bend to steep angles and have features of the order of the wavelength; characteristics
that are necessary and desirable in areas like nanophotonics, plasmonics, and micro-particle
manipulation.
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